- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bourdon, Estelle (2)
-
Burleigh, J. Gordon (2)
-
Gold, Maria Eugenia (2)
-
Kawabe, Soichiro (2)
-
Ksepka, Daniel T. (2)
-
Lefebvre, Louis (2)
-
Marugán-Lobón, Jesús (2)
-
Morhardt, Ashley (2)
-
Scofield, R. Paul (2)
-
Watanabe, Akinobu (2)
-
van Tuinen, Marcel (2)
-
Balanoff, Amy M (1)
-
Balanoff, Amy M. (1)
-
Bever, Gabriel S (1)
-
Bever, Gabriel S. (1)
-
Bhullar, Bhart-Anjan S (1)
-
Bhullar, Bhart-Anjan S. (1)
-
Braun, Edward L (1)
-
Braun, Edward L. (1)
-
Clarke, Julia A (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
New Zealand is a globally significant hotspot for seabird diversity, but the sparse fossil record for most seabird lineages has impeded our understanding of how and when this hotspot developed. Here, we describe multiple exceptionally well-preserved specimens of a new species of penguin from tightly dated (3.36–3.06 Ma) Pliocene deposits in New Zealand. Bayesian and parsimony analyses place Eudyptes atatu sp. nov. as the sister species to all extant and recently extinct members of the crested penguin genus Eudyptes . The new species has a markedly more slender upper beak and mandible compared with other Eudyptes penguins. Our combined evidence approach reveals that deep bills evolved in both crested and stiff-tailed penguins ( Pygoscelis ) during the Pliocene. That deep bills arose so late in the greater than 60 million year evolutionary history of penguins suggests that dietary shifts may have occurred as wind-driven Pliocene upwelling radically restructured southern ocean ecosystems. Ancestral area reconstructions using BioGeoBEARS identify New Zealand as the most likely ancestral area for total-group penguins, crown penguins and crested penguins. Our analyses provide a timeframe for recruitment of crown penguins into the New Zealand avifauna, indicating this process began in the late Neogene and was completed via multiple waves of colonizing lineages.more » « less
-
Ksepka, Daniel T.; Balanoff, Amy M.; Smith, N. Adam; Bever, Gabriel S.; Bhullar, Bhart-Anjan S.; Bourdon, Estelle; Braun, Edward L.; Burleigh, J. Gordon; Clarke, Julia A.; Colbert, Matthew W.; et al (, Current Biology)
-
Ksepka, Daniel T; Balanoff, Amy M; Smith, N Adam; Bever, Gabriel S; Bhullar, Bhart-Anjan S; Bourdon, Estelle; Braun, Edward L; Burleigh, J. Gordon; Clarke, Julia A; Colbert, Matthew W; et al (, Current Biology)Relative brain sizes in birds can rival those of primates, but large-scale patterns and drivers of avian brain evolution remain elusive. Here, we explore the evolution of the fundamental brain-body scaling relationship across the origin and evolution of birds. Using a comprehensive dataset sampling> 2,000 modern birds, fossil birds, and theropod dinosaurs, we infer patterns of brain-body co-variation in deep time. Our study confirms that no significant increase in relative brain size accompanied the trend toward miniaturization or evolution of flight during the theropod-bird transition. Critically, however, theropods and basal birds show weaker integration between brain size and body size, allowing for rapid changes in the brain-body relationship that set the stage for dramatic shifts in early crown birds. We infer that major shifts occurred rapidly in the aftermath of the Cretaceous-Paleogene mass extinction within Neoaves, in which multiple clades achieved higher relative brain sizes because of a reduction in body size. Parrots and corvids achieved the largest brains observed in birds via markedly different patterns. Parrots primarily reduced their body size, whereas corvids increased body and brain size simultaneously (with rates of brain size evolution outpacing rates of body size evolution). Collectively, these patterns suggest that an early adaptive radiation in brain size laid the foundation for subsequent selection and stabilization.more » « less
An official website of the United States government
